STICHTING MATHEMATISCH CENTRUM 2e BOERHAAVESTRAAT 49 AMSTERDAM

ZW 1954 - 006

A property of positive definite matrices

H.J.A. Duparc and W. Peremans

A property of positive definite matrices.

H.J.A. Duparc and W. Peremans.

we prove

$$\det_{r,s} (\det_{r} (Z_r A Z_s)) \ge 0.$$

For the proof of the theorem a process is introduced which will be called m-compoundification.

If B is an arbitrary p x q matrix and m a positive integer \leq p and \leq q, then the m-compound matrix $B^{(m)}$ of B is a $\binom{p}{m}x\binom{q}{m}$ matrix, the elements of which are all possible minors of B of order m; thus any element $b_{ij}^{(m)}$ of $B^{(m)}$ is an m x m minor of B in which elements of the $i_1^{th}, \ldots, i_m^{th}$ row (with $i_1 < \ldots < i_m$) and $j_1^{th}, \ldots, j_m^{th}$ column (with $j_1 < \ldots < j_m$) of B occur. The elements $b_{ij}^{(m)}$ are ordered in such a way that i < k if the set i_1, i_2, \ldots, i_m preceeds k_1, k_2, \ldots, k_m lexicographically and j < l if j_1, \ldots, j_m preceeds l_1, \ldots, l_m lexicographically l

Consequences of this procedure are

1°: In the elements $b_{ii}^{(m)}$ only elements of the $i_1^{th}, \dots, i_m^{th}$ row and of the $i_1^{th}, \dots, i_m^{th}$ column of B occur, hence $b_{ii}^{(m)}$ is a principal minor of B and may be denoted by (i_1, \dots, i_m) .

 2° : If one of the integers p and q, say p, is equal to m, then $B^{(m)}$ is a 1 x $\binom{q}{m}$ matrix hence a vector. In this case the elements of $B^{(m)}$ can be denoted by $b_{i}^{(m)}$ (i=1,..., $\binom{q}{m}$).

Not every vector with $\binom{q}{m}$ components can be considered as an m^{th} compound of an m x q matrix. This is the case when and only when its components satisfy the wellknown p-relations.²)

We now prove

Lemma 1. If A is a positive definite p x p matrix, then its m-compound

¹⁾ Confer A.C.Aitken, Determinants and matrices, Chapter V, p.90. Confer R.Weitzenbock, Invariantentheorie, p.116,117,85.

 $A^{(m)}$ (where $m \leq p$) is also a positive definite matrix. Proof: We prove the lemma by induction on p.

For p=1 the lemma is obvious, since then m=1 and $A^{(m)}=A$.

Now suppose the lemma holds for p-1 and arbitrary $m \leq p-1$.

We then prove it for p,i.e. we show that the m-compound $A^{(m)}$ of a p x p matrix $A^{(m)}$ is positive definite. It is sufficient to show that the principal minors $A_h^{(m)}$ of $A^{(m)}$ (h=1,..., $\binom{p}{m}$) are >0; here $A_h^{(m)}$ is the principal minor containing elements of the

$$\binom{p}{m}-h+1$$
th, $\binom{p}{m}-h+2$ th,..., $\binom{p}{m}$ th row(and column) of $A^{(m)}$.

Now two cases are considered

10: $h \leq {p-1 \choose m}$. Then, due to the lexicographical order of the elements of $A^{(m)}$ in the principal minor $A_h^{(m)}$ of $A^{(m)}$, in all elements only elements of the $2^{nd}, \ldots, p^{th}$ row (and column) of A occur, hence $A_h^{(m)}$ is a principal minor of $A_{11}^{(m)}$; here A_{11} denotes the minor of $A_{11}^{(m)}$ in A. Since A is positive definite also the principal minor $A_{11}^{(m)}$ of A is positive definite. This minor $A_{11}^{(m)}$ being of order p-1 by the induction hypothesis we infer that $A_{11}^{(m)} > 0$.

 2° : h > $\binom{p-1}{m}$. Then those m x m minors of A which occur in the complementary minor of $A_h^{(m)}$ contain elements of the first row (and column) of A. Now by Franke's theorem 3) the identity

$$A_h^{(m)} = |a_{rs}|^c M$$
 holds, where $c = h - (\frac{p-1}{m})$

and where M is the complementary minor in the adjugate of $A^{(m)}$

By the above remark the elements of M are minors of A in which neither elements of the first row nor elements of the first column of A occur. Hence M is a principal minor of $A_{11}^{\ (p-m)}$ and as before by induction hypothesis we have M > 0. Since A is positive definite we get

$$|a_{rs}| > 0$$
, hence $A_h^{(m)} > 0$.

Lemma 2. If V is an n x m matrix $(m \le n)$ and if A is an n x n matrix, then for the m-compounds $V^{(m)}$ and $A^{(m)}$ one has

$$det (V'A V) = V'^{(m)}A^{(m)}V^{(m)}.$$

<u>Proof</u>. By a theorem of Binet-Cauchy 4) on compound matrices from C = AB it follows that $C^{(m)} = A^{(m)}B^{(m)}$ Hence

 $V^{(m)}A^{(m)}V^{(m)} = (V^{*}AV)^{(m)} = \det(V^{*}AV), \text{ because } V^{*}AV \text{ is an } m \ge m \text{ m matrix.}$

³⁾ Confer A.C.Aitken, loc.cit.,p.100 4) Confer A.C.Aitken, loc.cit.,p.93

We now proceed to prove the above theorem on matrices A,Z_1,\ldots,Z_k . Since A is positive definite, by lemma 1 also $A^{(m)}$ is positive definite hence for any $\binom{n}{m}$ x 1 matrix V one has

$$V'A^{(m)}V \ge 0.$$

 $V = \sum_{n=1}^{k} \lambda_n Z_n^{(m)}$

one gets for all real $\lambda_1, \dots, \lambda_k$

$$\sum_{r,s=1}^{k} \lambda_r \lambda_s Z_r^{(m)} A^{(m)} Z_s^{(m)} \ge 0,$$

$$\det(Z_{r}^{(m)} A^{(m)} Z_{s}^{(m)}) \ge 0.$$

Then by lemma 2 one obtains

$$\det_{r,s}(\det(Z_r, A Z_s)) \ge 0.$$

It is not without interest to investigate some cases in which the last relation is an equality. Now since in lemma 1 the matrix $A^{(m)}$ was proved to be positive definite, this can only occur if V=0, i.e. if

(1)
$$\sum_{r=1}^{k} \lambda_r Z_r^{(m)} = 0 \qquad (\lambda_1, \dots, \lambda_k \text{ not all } = 0)$$

Now we denote the mecolumns (means trices) of Z_r by z_{r1}, \ldots, z_{rm} (r=1,...,k), which we interprete as points in a projective space \boldsymbol{G}_{m} of m-1 dimensions. The linear space generated by z_{r1}, \dots, z_{rm} will be denoted by X_r (r=1,...,m).

Now obviously the relation (1) is equivalent to the relation

(2)
$$\sum_{r=1}^{k} \lambda_{r} (z_{r+1} \dots z_{rm} u_{m+1} \dots u_{n}) = 0;$$

 $h_{\text{Gre}} = u_{m+1}, \dots, u_n$ denote arbitrary points of G_{in} , further ($\mathbf{z}_{\mathtt{r}1}$. . . $\mathbf{z}_{\mathtt{r}m}$ $\mathbf{u}_{\mathtt{m}+1}$. . . $\mathbf{u}_{\mathtt{n}}$) denotes the determinant the columns of which are z_{r1} ... z_{rm} u_{m+1} ... u_{n} .

We further remark that if the relation $(w_1 \cdot \cdot \cdot w_h u_{h+1} \cdot \cdot \cdot u_n) = 0$ holds for arbitrary u_{h+1} ... u_n , the points w_1, \ldots, w_h belong to a G_{h-1} , and conversely.

We discuss the relation (2) for some values of k. I. k = 1. Then $Z_1^{(m)} = 0$, hence all m x m minors of Z_1 are = 0, hence the points z_{11}, \dots, z_{1m} are linear dependent and so belong to a G_{m-1} . Conversely if these m points belong to a G_{m-1} , then $Z_1^{(m)} = 0$. II. k = 2. We may suppose that both X_1 and X_2 are G_m 's, for otherwise we are in case I. Hence $\lambda_1 \lambda_2 \neq 0$.

In the case n > m in (2) with k=2 we put $u_{m+1}=z_{1\mu}$ ($\mu=1,\dots,n$). Then it follows that $z_{1\mu}\in X_2$, hence

 $X_1 \subset X_2$, consequently $X_1 = X_2$. In the case n = m one has $X_1 = X_2$, since both are equal to the whole space G_n .

Conversely if the ${\tt G}_m$'s ${\tt X}_1$ and ${\tt X}_2$ are equal, then there exists an m x m matrix T such that

$$Z_2 = Z_1 T$$
,

hence by lemma 2

$$Z_{2}^{(m)} = Z_{1}^{(m)} T^{(m)},$$

where $T^{(m)}$ is a scalar this proves (1).

III. k = 3. We may suppose that X_1, X_2 and X_3 are G_m 's and moreover that $X_1 \neq X_2$, $X_2 \neq X_3$, $X_3 \neq X_1$, for otherwise we are either in case I or in case II.

Hence $\lambda_1 \lambda_2 \lambda_3 \neq 0$ and n > m. Since $X_3 \neq X_1$ there exists a point x in X_3 which does not belong to X_1 .

Substituting $u_{m+1} = x$ in (2) we infor

(3) $\lambda_1(z_{11}...z_{1m} \times u_{m+2}...u_n) + \lambda_2(z_{21}....z_{2m} \times u_{m+2}...u_n) = 0$ for arbitrary $u_{m+2}...u_n$. If x would belong to X_2 then we would get $\lambda_1(z_{11}...z_{1m} \times u_{m+2}...u_n) = 0,$

hence $\mathbf{x} \in \mathbb{X}_1$ on account of $\lambda_1 \neq 0$. Thus $\mathbf{x} \notin \mathbb{X}_2$.

Then applying case II on the relation (3) used with m+1 in stead of m we find that the two G_{m+1} 's generated by x and X_1 and by x and X_2 are equal. Consequently by a well known theorem the intersection S of X_1 and X_2 is a G_{m+1} . Substituting $u_{m+1} = s$ in (2), where s is an arbitrary point of S we infer

$$\lambda_3(z_{31}, \ldots z_{3m} \text{ s } u_{m+2}, \ldots, u_n) = 0$$

for arbitrary $u_{m+2}, \dots u_n$, hence $s \in X_3$ on account of $\lambda_3 \neq 0$. Consequently $S \subset X_3$.

The above G_{m+1} contains S and moreover x. Obviously x $\not\in$ S. Consequently the intersection of this G_{m+1} and the G_m generated by x and S is a G_m and this $G_m = X_3$ since $x \in X_3$, S $\subset X_3$.

So in this case III we find that the intersection of X_1, X_2 and X_3 is a G_{m-1} and their union is a G_{m+1} .

Conversely if X_1, X_2 and X_3 are G_m 's and are mutually different and if their intersection S is a G_{m-1} and their union R is a G_{m+1} , then (1) holds with k=3.

To prove this result we choose m-1 linear independent points s_1, \dots, s_{m-1} in S. Let a_1 belong to X_1 but not to S, let a_2 belong to X_2 , but not to S. Since the G_2 generated by a_1 and a_2 and X_3 (which is a G_m) belong

to R(which is a G_{m+1}) the intersection of G_2 and X_3 is a G_1 . Hence there exists a point a_3 in X_3 such that

$$\mu_1 a_1 + \mu_2 a_2 + \mu_3 a_3 = 0$$
 , $\mu_1 \mu_2 \mu_3 \neq 0$.

Let A_r denote the matrix with columns s_1 . s_{m-1} a_r (r=1,2,3). Then we have

$$\mu_1 A_1 + \mu_2 A_2 + \mu_3 A_3 = 0.$$

Further there exist nonsingular matrices $\mathtt{T}_{\mathtt{r}}$ such that

$$A_r = Z_r T_r (r=1,2,3).$$

Hence

$$\mu_1 \mathbb{Z}_1 \mathbb{T}_1 + \mu_2 \mathbb{Z}_2 \mathbb{T}_2 + \mu_3 \mathbb{Z}_3 \mathbb{T}_3 = 0.$$

Again using lemma 2 and the fact that $T_r^{(m)}$ is a scalar \neq 0 (r=1,2,3) we get

$$\lambda_{1}Z_{1}^{(m)} + \lambda_{2}Z_{2}^{(m)} + \lambda_{3}Z_{3}^{(m)} = 0,$$

where

$$\lambda_r = \mu_r T_r^{(m)} \neq 0$$
 (r=1,2,3).